Length adaptation of airway smooth muscle: a stochastic model of cytoskeletal dynamics.

نویسندگان

  • Paulo S P Silveira
  • James P Butler
  • Jeffrey J Fredberg
چکیده

To account for cytoskeleton remodeling as well as smooth muscle length adaptation, here we represent the cytoskeleton as a two-dimensional network of links (contractile filaments or stress fibers) that connect nodes (dense plaques or focal adhesions). The network evolves in continuous turnover with probabilities of link formation and dissolution. The probability of link formation increases with the available fraction of contractile units, increases with the degree of network activation, and decreases with increasing distance between nodes, d, as 1/d(s), where s controls the distribution of link lengths. The probability of link dissolution decays with time to mimic progressive cytoskeleton stabilization. We computed network force (F) as the vector summation of link forces exerted at all nodes, unloaded shortening velocity (V) as being proportional to the average link length, and network compliance (C) as the change in network length per change in elastic force. Imposed deformation caused F to decrease transiently and then recover dynamically; recovery ability decreased with increasing time after activation, mimicking observed biological behavior. Isometric contractions showed small sensitivity of F to network length, thus maintaining high force over a wide range of lengths; V and C increased with increasing length. In these behaviors, link length regulation, as described by the parameter s, was found to be crucial. Concerning length adaptation, all phenomena reported thus far in the literature were captured by this extremely simple network model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myosin filament polymerization and depolymerization in a model of partial length adaptation in airway smooth muscle.

Length adaptation in airway smooth muscle (ASM) is attributed to reorganization of the cytoskeleton, and in particular the contractile elements. However, a constantly changing lung volume with tidal breathing (hence changing ASM length) is likely to restrict full adaptation of ASM for force generation. There is likely to be continuous length adaptation of ASM between states of incomplete or par...

متن کامل

Electron microscopic study of actin polymerization in airway smooth muscle.

Actin polymerization as part of the normal smooth muscle response to various stimuli has been reported. The actin dynamics are believed to be necessary for cytoskeletal remodeling in smooth muscle in its adaptation to external stress and strain and for maintenance of optimal contractility. We have shown in our previous studies in airway smooth muscle that myosins polymerized in response to cont...

متن کامل

Preventive effects of ipratropium and salbutamol against insulin induced tracheal smooth muscle contraction in guinea pig model

Inhalational insulin was withdrawn from the market due to its potential to produce airway hyper-reactivity and bronchoconstriction. So the present study was designed to explore the acute effects of insulin on airway reactivity of guinea pigs and protective effects of salbutamol and ipratropium against insulin induced airway hyper-responsiveness on isolated tracheal smooth muscle of guinea pig. ...

متن کامل

Mechanism of partial adaptation in airway smooth muscle after a step change in length.

The phenomenon of length adaptation in airway smooth muscle (ASM) is well documented; however, the underlying mechanism is less clear. Evidence to date suggests that the adaptation involves reassembly of contractile filaments, leading to reconfiguration of the actin filament lattice and polymerization or depolymerization of the myosin filaments within the lattice. The time courses for these eve...

متن کامل

Structure-function correlation in airway smooth muscle adapted to different lengths.

Airway smooth muscle is able to adapt and maintain a nearly constant maximal force generation over a large length range. This implies that a fixed filament lattice such as that found in striated muscle may not exist in this tissue and that plastic remodeling of its contractile and cytoskeletal filaments may be involved in the process of length adaptation that optimizes contractile filament over...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 99 6  شماره 

صفحات  -

تاریخ انتشار 2005